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Abstract

Risk managers at financial institutions are concerned with estimating default

probabilities for asset groups both for internal risk control procedures and for

regulatory compliance. Low-default assets pose an estimation problem that has

attracted recent concern. The problem in default probability estimation for

low-default portfolios is that there is little relevant historical data information.

No amount of data processing can fix this problem. More information is required.

Incorporating expert opinion formally is an attractive option. The probability

(Bayesian) approach is proposed, its feasibility demonstrated, and its relation to

supervisory requirements discussed.
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II, risk management
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1 Introduction

The Basel II framework (Basel Committee on Banking Supervision (2004)) for

capital standards provides for banks to use models to assess risks and determine

minimum capital requirements. All aspects of the models – specification,

estimation, validation – will have to meet the scrutiny of national supervisors.

The presumption is that these models will be the same ones that sophisticated

institutions use to manage their loan portfolios. Banks using internal ratings-based

(IRB) methods to calculate credit risks must calculate default probabilities (PD),

loss given default (LGD), exposure at default (EAD) and effective maturity (M)

for groups of homogeneous assets. For very safe assets calculations based on

historical data may ”not be sufficiently reliable” (Basel Committee on Banking

Supervision (2005)) to form a probability of default estimate, since so few defaults

are observed. This issue has attracted attention in the trade literature, for

example Balthazar (2004). Methods which advocate departing from the usual

unbiased estimator have been proposed by Pluto and Tasche (2005). A related

estimator for PD in low-default portfolios based on the CreditRisk+ model is

proposed by Wilde and Jackson (2006). A Bayesian approach is proposed by

Dwyer (2006), who uses the Bayesian probability mechanics (an improvement over

standard practice) but does not incorporate expert information.

In this paper I argue that uncertainty about the default probability should be

modeled the same way as uncertainty about defaults – namely, represented in a

probability distribution. A future default either occurs or doesn’t (given the

definition). Since we do not know in advance whether it occurs or not, we model

this uncertain event with a probability distribution. This model reflects our

partial knowledge of the default mechanism. Similarly, the default probability is

unknown. But experts do know something about the latter, and we can represent

this knowledge in a probability distribution. Inference should be based on a

probability distribution for the default probability. The final distribution should

reflect both data and expert information. This combining of information is easy

to do using Bayes rule, once the information is represented in probability

distributions. The result is an estimator which is different from the unbiased

estimator, but which moves the unbiased estimator toward an expert opinion

rather than simply bounding it away from zero.

For convenience and ease of exposition I focus here on estimating the default
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probability θ for a portfolio of safe assets. Section 2 treats the specification of the

likelihood function and indicates what might be expected from the likelihood

function. This paper is mainly concerned with the incorporation of expert

information, so a simple likelihood specification, which is nevertheless compatible

with industry practice and the Basel II prescriptions, is sufficient. General

comments on the modeling of uncertainty through probabilities, the standard

approach to default modeling, are made in Section 3. The approach is applied to

expert information about the unknown default probability and how that might be

represented. Specifically, it is represented in a probability distribution, for exactly

the same reasons that uncertainty about defaults is represented in a probability

distribution. Combination of expert and data information is taken up in Section

4, following for example DeGroot (1970). Section 5 considers elicitation of an

expert’s information and its representation in a probability distribution. Section

6 treats the inferences that could be made on the basis of the expert information

and likely data information. It is possible in the low-default case to consider all

likely data realizations in particular samples. Section 7 considers additional

inference issues and supervisory issues. Section 8 concludes.

2 The likelihood function

Expert judgement is crucial at every step of a statistical analysis. Expert

knowledge could be the result of accumulated experience with similar problems

and data or simply the result of knowledgeable consideration. Typical data consist

of a number of asset/years for a group of similar assets. In each year there is

either a default or not. This is a clear simplification of the actual problem in

which asset quality can improve or deteriorate and assets are not completely

homogeneous. Nevertheless, it is useful to model the problem as one of

independent Bernoulli sampling with unknown parameter θ. This is especially

appropriate in the low-default case, as models dealing with realistic complications

in large datasets with many defaults will not be supported by the data when the

sample size is small and the number of defaults is low (typically 0,1, or 2). With

large datasets exhibiting a significant default experience the independent Bernoulli

model is the simplest but not the only possibility.Certainly independence is a

strong assumption and would have to be considered carefully. Note that

independence here is conditional independence. The marginal (with respect to θ;
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see below) distribution of D certainly exhibits dependence. It is through this

dependence that the data are informative on the default probability. Second, the

assumpion that the observations are identically distributed may be unwarranted.

Perhaps the default probabilities differ across assets, and the most risky generally

default first. In low-default portfolios, these issues do not arise. Note that all of

these assumptions must be explicit and are subject to supervisory review. See

OCC (2006).

Let D = {di, i = 1, ..., n} denote the whole data set and r = r(D) =
∑

i di the

count of defaults. Then the joint distribution of the data is

p(D|θ) =
∏
θdi(1− θ)1−di (1)

= θr(1− θ)n−r

As a function of θ for given data D, this is the likelihood function L(θ|D). Since

this distribution depends on the data D only through r (n is regarded as fixed),

the sufficiency principle implies that we can concentrate attention on the

distribution of r

p(r|θ) =
(
n
r

)
θr(1− θ)n−r (2)

Regarded as a function of θ for given data, Equation 2 is the likelihood function

L(θ|r). Since r(D) is a sufficient statistic no other function of the data is

informative about θ given r(D). All of the relevant data information on θ comes

through the distribution p(r|θ). The strict implication is that no amount of

data-massaging or data-processing can improve the data evidence on θ. Figure 1

shows the normed likelihood functions L(θ|r) = L(θ|r)/maxθ L(θ|r) for

r = 0, 1, 2, 5, and n = 100. These figures illustrate the sorts of observed likelihood

functions one might see in practice.

Figure 1 (at end of paper)

Figure 1 illustrates that small changes in the realized number of defaults can have

a substantial effect on the maximum likelihood estimator (MLE). Thus, for

n=100, an increase by 1 in the number of defaults increases the MLE by .01. If

the probability being estimated is large (e.g., 0.3), then a difference in the

estimate of 0.01 is not perhaps as dramatic as when the realistic values are 0.01 or

0.02. Further, these small estimates are sharply determined, according to the

shape of the likelihood functions.
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A different point of view can be illustrated by the expected likelihood function for

a given hypothetical value of θ. Figure 2 plots
∑

j L(θ|rj)p(rj|θ0) for θ0 =0.005,

0.01, 0.02, and 0.05 and n=100. This function is rather more spread than the

likelihood on given data (note that L(θ|r) is concave in r for values near the most

likely value nθ).

Figure 2 (at end of paper)

3 Expert information

It is absolutely clear that there is some information available about θ in addition

to the data information. For example, we expect that the portfolio in question is

a low-default portfolio. Where does this expectation come from? We would be

surprised if θ for such a portfolio turned out to be, say, 0.2. Further, there is a

presumption that no portfolio has default probability 0. This information should

be organized and incorporated in the analysis in a sensible way. This involves

quantification of the information or, alternatively, quantification of the uncertainty

about θ.

Quantification of uncertainty requires comparison with a standard. One standard

for measuring uncertainty is a simple experiment, such as drawing balls from an

urn at random as above, or sequences of coin flips. We might begin by defining

events for consideration. Examples of events are A = ”θ ≤ 0.005”;

”B = ”θ ≤ 0.01”; C = ”θ ≤ 0.015, ”etc. Assign probabilities by comparison. For

example A is about as likely as seeing three heads in 50 throws of a fair coin.

Sometimes it is easier to assign probabilities by considering the relative likelihoods

of events and their complements. Thus, either A or ”not A” must occur.

Suppose A is considered twice as likely as ”not A.” Then the probability of A is

2/3, since we have fixed the ratio and the probabilities must add up to one. Some

prefer to recast this assessment in terms of betting. Thus, the payout x is received

if A occurs, (1− x) if not. Again, the events are exhaustive and mutually

exclusive. Adjust x until you are indifferent between betting on A and ”not A.”

Then, it is reasonable to assume for small bets that xP (A) = (1− x)(1− P (A)) or

P (A) = (1− x). These possibilities and others are discussed in Berger (1980). It

is clear that assessing probabilities requires some thought and some practice, but

also that it can be done. It can be shown that beliefs that satisfy certain
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consistency requirements, for example that the believer is unwilling to make

sure-loss bets, lead to measures of uncertainty that combine according to the laws

of probability: convexity, additivity and multiplication. See for example DeGroot

(1970).

Once probabilities have been elicited, we turn to the practical matter of specifying

a functional form for the prior distribution p(θ). The conditioning argument e will

be temporarily dropped as we consider properties of potential functional forms for

representing uncertainty. A particularly easy specification is the uniform p(θ) = 1

for θ ∈ [0, 1]. This prior would sometimes be regarded as ”uninformative,” (with

the implied additional property ”unobjectionable”) since it assigns equal

probability to equal length subsets of [0,1]. The mean of this distribution is 1/2.

Other moments also exist, and in that sense it is indeed informative (a prior

expectation of default probability 1/2 might not be considered suitable for

low-default portfolios). A generalization of the uniform in common use for a

parameter that is constrained to lie in [0,1] is the beta distribution. The beta

distribution for the random variable θ ∈ [0, 1] with parameters (α, β) is

p(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (3)

A somewhat richer specification is the beta distribution (Equation 3) modified to

have support [a, b]. It is possible that some applications would require the support

of θ to consist of the union of disjoint subsets of [0, 1] but this seems fanciful in

the current application. Let t have the beta distribution and upon change

variables to θ(t) = a+ (b− a)t with inverse function t(θ) = (θ − a)/(b− a) and

Jacobian dt(θ)/dθ = 1/(b− a). Then

p(θ|α, β, a, b) =
Γ(α + β)

(b− a)Γ(α)Γ(β)
((a− θ)/(a− b))α−1((θ − b)/(a− b))β−1 (4)

over the range θ ∈ [a, b]. This distribution has mean Eθ = (bα + aβ)/(α + β).

The four-parameter Beta distribution allows flexibility within the range [a, b], but

in some situations it may be too restrictive. A simple generalization is the

seven-parameter mixture of two four-parameter Betas with common support. The

additional parameters are the two new {α, β} parameters and the mixing
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parameter λ.

p(θ|α1, β1, α2, β2, a, b) =
λΓ(α1 + β1)

(b− a)Γ(α1)Γ(β1)
((a− θ)/(a− b))α1−1((θ − b)/(a− b))β1−1

+
(1− λ)Γ(α2 + β2)

(b− a)Γ(α2)Γ(β2)
((a− θ)/(a− b))α2−1((θ − b)/(a− b))β2−1

Computations with this mixture distribution are not substantially more

complicated than computations with the four-parameter Beta alone. If necessary,

more mixture components with new parameters can be added, although it seems

unlikely that expert information would be detailed and specific enough to require

this complicated a representation. There is theory on the approximation of

general prior distributions by mixtures of conjugate distributions. By choosing

enough Beta-mixture terms the approximation of an arbitrary continuous prior

p(θ) for a Bernoulli parameter can be made arbitrarily accurate. See Diaconis and

Ylvisaker (1985). Useful references on the choice of prior distribution are Box and

Tiao (1992) and Jaynes (2003).

4 Updating (learning)

With p(θ) describing expert opinion and the statistical model for the data

information p(r|θ) at hand, we are in a position to combine the expert information

with the data information to calculate p(θ|r), the posterior distribution describing

the uncertainty about θ after observation of r defaults in n trials. The rules for

combining probabilities imply P (A|B)P (B) = P (A and B) = P (B|A)P (A), or

more usefully P (B|A) = P (A|B)P (B)/P (A), assuming P (A) > 0. Applying this

rule gives Bayes’ rule for updating beliefs

p(θ|r) = p(r|θ)p(θ)/p(r) (5)

The denominator p(r), is the unconditional distribution of the number of defaults,

p(r) =

∫
p(r|θ)p(θ)dθ. (6)

p(r) is also called the predictive distribution of the statistic r.
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For the purpose of predicting the number of defaults in a portfolio of a given size,

the predictive distribution (6) is relevant. For inference about the default

probability θ, for example for input into the Basel capital formula, the posterior

distribution (5) is relevant. Further discussion of the beta-binomial analysis

sketched here and of applications to other models is given by Raiffa and Schlaifer

(1961). On the Bayesian approach to econometrics see Zellner (1996), a reprint of

the influential 1971 edition.

5 Prior Distribution

I have asked an expert to specify a portfolio and give me some aspects of his

beliefs about the unknown default probability. The portfolio consists of loans to

highly-rated, large, internationally active and complex banks. The method

included a specification of the problem and some specific questions over e-mail

followed by a discussion. Elicitation of prior distributions is an area that has

attracted attention. General discussions of the elicitation of prior distributions

are given by Kadane et al. (1980) and Kadane and Wolfson (1998). An example

assessing a prior for a Bernoulli parameter is Chaloner and Duncan (1983).

Chaloner and Duncan follow Kadane et al in suggesting that assessments be done

not directly on the probabilities concerning the parameters, but on the predictive

distribution. That is, questions should be asked about observables, to bring the

expert’s thoughts closer to familiar ground. Thus, in the case of defaults, a lack

of prior knowledge might indicate that the predictive probability of the number of

defaults in a sample of size n would be 1/(n+1). Departures from this predictive

distribution indicate prior knowledge. In the case of a Bernoulli parameter and a

two-parameter beta prior, Chaloner and Duncan suggest first eliciting the mode of

the predictive distribution for a given n (an integer), then assessing the relative

probability of the adjacent values. Graphical feedback is provided for refinement

of the specification. Examples used by Chaloner and Duncan consider n=20;

perhaps the method would be less attractive for the large sample sizes and low

probabilities we anticipate. The suggestion to interrogate experts on what they

would expect to see in data, rather than what they would expect of parameter

values, is appealing and I have to some extent pursued this with our expert.

It is necessary to specify a period over which to define the default probability.

The ”true” default probability has probably changed over time. Recent
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experience may be thought to be more relevant than the distant past, although

the sample period should be representative of experience through a cycle. It

could be argued that a recent period including the 2001-2002 period of mild

downturn covers a modern cycle. A period that included the 1980’s would yield

higher default probabilities, but these are probably not currently relevant. The

default probability of interest is the current and immediate future value, not a

guess at what past estimates might be. There are 50 or fewer banks in this highly

rated category, and a sample period over the last seven years or so might include

300 observations as a high value. For our application, we considered a ”small”

sample of 100 observations and a ”large” sample of 300 observations. Of course,

the prior does not depend on the sample size.

We began by considering first the predictive distribution on 300 observations, the

modal value was zero defaults. Upon being asked to consider the relative

probabilities of zero or one default, conditional on one or fewer defaults occurring,

the expert expressed some trepidation as it is difficult to think about such rare

events. This was the method suggested by Chaloner and Duncan (1983) in an

application involving larger probabilities and smaller datasets. Of course, the

conditioning does not matter for the relative probabilities, but it may be easier for

an expert to focus attention given the explicit conditioning. Our expert had

difficulty thinking about the hypothetical default experiences and their relative

likelihoods. The expert was quite happy in thinking about probabilities over

probabilities, however. This may not be so uncommon in this technical area, as

practitioners are accustomed to working with probabilities. The minimum value

for the default probability was 0.0001 (one basis point). The expert reported that

a value above 0.035 would occur with probability less than 10%, and an absolute

upper bound was 0.05. The median value was 0.0033. The expert remarked that

the mean at 0.005 was larger than the median. Quartiles were assessed by asking

the expert to consider the value at which larger or smaller values would be

equiprobable given that the value was less than the median, then given that the

value was more than the median. The former seemed easier to think about and

was 0.00225 (”between 20 and 25 basis points”). The latter, the .75 quartile, was

assessed at .025. Our expert found it much easier to think in terms of quantiles

than in terms of moments.

This set of answers is more than enough information to determine a

four-parameter Beta distribution. I used a method of moments to fit parametric
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probability statements to the expert assessments. The moments I used were

squared differences relative to the target values, for example

((a− 0.0001)/0.0001)2. The support points were quite well-determined for a

range of {α, β} pairs at the assessed values {a, b} = [0.0001, 0.05]. These were

allowed to vary but the optimization routine did not change them beyond the 7th

decimal place. The rather high value of b reflects the long tail apparently desired

by the expert. The {α, β} parameters were rather less well-determined (the sum of

squares function was fairly flat) and I settled on the values (1.9, 21.0) as best

describing the expert’s information. Changing the weights in the fitting routine

did not substantially change any of the parameter values. The resulting prior

distribution p(θ) is graphed in Figure 3.

Figure 3 (at end of paper)

The median of this distribution is 0.0036, the mean is 0.0042. In practice, after the

information is aggregated into an estimated probability distribution, then

additional properties of the distribution would be calculated and the expert would

be consulted again to see if any changes were in order before proceeding to data

analysis Lindley (1982). This process would be repeated as necessary. In the

present application there was one round of feedback. This was valuable since the

expert had had time to consider the probabilities involved. The characteristics

reported are from the second round of elicitation.

The predictive distribution 6 corresponding to this prior is given in Figure 4 for

n = 100 and n = 300.

Figure 4 (at end of paper)

With our specification, the expected value of r, E(r) =
n∑
k=0

kp(k) is 0.424 for n=100

and 1.27 for n=300. The modal value is zero for both sample sizes. Defaults are

expected to be rare events.

It is interesting to compute the unconditional expected likelihood

EL(θ) =
∑
j

L(θ|rj)p(rj)

for comparison with Figure 2. This is given in figure 5 for n = {100, 300, 500}.

Figure 5 (at end of paper)
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6 Posterior Analysis

Recall that the data set information on the default probability is completely

specified by the sample size n and the number of defaults r. Sample sizes between

50 and 100 (and less than 50) are not unrealistic and may be typical. The number

of defaults r = 0 is typical for these datasets and in fact this is the case that has

prompted the literature on low-default portfolios. Thus, the results presented are

applications in the sense that there are extremely relevant datasets with these

summary statistics. The posterior distribution, p(θ|r), is graphed in figure 6 for r

= 0, 1, 2 and 5 and n=100 and in figure 7 for r = 0, 1, 3 and 10 and n=300. The

corresponding likelihood functions, for comparison, were given in Figure 1. Note

the substantial differences in location. Comparison with the prior distribution

graphed in Figure 3 reveals that the expert provides much more information to

the analysis than do the data.

Figure 6 (at end of paper)

Figure 7 (at end of paper)

Given the distribution p(θ|r), we might ask for a summary statistic, a suitable

estimator for plugging into the required capital formulas as envisioned by the

Basel Committee on Banking Supervision (2004). A natural value to use is the

posterior expectation, θ = E(θ|r). The expectation is an optimal estimator under

quadratic loss and is asymptotically an optimal estimator under a wide variety of

loss functions. An alternative, by analogy with the maximum likelihood estimator

θ̂, is the posterior mode
·
θ. As a summary measure of our confidence we would use

the posterior standard deviation σθ =

√
E(θ − θ)

2
. By comparison, the usual

approximation to the standard deviation of the maximum likelihood estimator is

σθ̂ =

√
θ̂(1− θ̂)/n. These quantities are given in Table 1 for a variety of

combinations of n and r.
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n r θ
·
θ θ̂ σθ σθ̂

100 0 0.0036 0.0018 0.000 0.0024 0 (!).

100 1 0.0052 0.0036 0.010 0.0028 0.0100

100 2 0.0067 0.0053 0.020 0.0031 0.0140

100 5 0.0109 0.0099 0.050 0.0037 0.0218

300 0 0.0027 0.0014 0.000 0.0018 0(!)

300 1 0.0039 0.0027 0.003 0.0022 0.0033

300 3 0.0064 0.0053 0.010 0.0027 0.0057

300 10 0.0137 0.0131 0.033 0.0035 0.0103

500 0 0.0021 0.0011 0.000 0.0015 0 (!)

500 2 0.0041 0.0032 0.004 0.0020 0.0028

500 10 0.0115 0.0108 0.020 0.0031 0.0063

500 20 0.0190 0.0185 0.040 0.0034 0.0088

Table 1: Default Probabilities: Location and Precision

Note: θ is the posterior mean,
·
θ the mode, θ̂ the MLE, σθ the posterior s.d. and

σθ̂ the s.d. of the MLE

Which procedure gives the most useful results for the hypothetical datasets? The

maximum-likelihood estimator θ̂ is very sensitive to small changes in the data.

One might imagine that updating would be done periodically, leading to

occasional substantial jumps in the estimator. For n=100, the MLE ranges from

0.00-0.05 as the number of defaults ranges from 0 to 5 (the last value is incredibly

unlikely). The posterior mean ranges in the same case from 0.0036 to 0.011, and

the posterior mode lies on a similar range slightly left shifted. The major

differences between the posterior statistics (θ and
·
θ) and θ̂ occur at extremely

unusual samples, for example the five-default sample in the 100-observation case.

This case illustrates the importance of reporting the MLE in addition to the

posterior statistics. The comparison gives an idea of the robustness of the

inference. Note that a prior that mixes expert information with ”diffuse”

information, perhaps by mixing with a uniform on [a, b] or a prior which is a

mean-preserving spread of the real expert information would move the posterior

statistics in the direction of the MLE. If there is a large movement when a small

proportion of a diffuse prior is added that is an indication that the results are

quite sensitive to the prior precision; that is, that the data and prior are in
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conflict. In this application, this information is revealed by a simple comparison of

the MLE and the posterior statistics. This comparison takes us out of the realm of

formal inference, and into the area of specification checking, or in Basel II terms,

validation. But what would be the modeler’s reaction to such a sample? Would it

be that the default probability for this portfolio, thought to be an extremely safe

portfolio, is indeed 0.05? A more appropriate reaction would be that there is

something unusual happening, signaling a need for further investigation. Perhaps

it is just a very unusual sample (in which case the estimate θ̂ is very unusual and

it might be better to stick with θ as an indication of the actual default

probability). Or perhaps some assets have been misclassified or there are other

errors in the data. Or perhaps economic conditions have become so dire that a

portfolio with a 5% default is a low-default portfolio. If so, surely some other

hints that things are not going well would be available.

7 Remarks on the Bayesian Approach

The approach suggested here raises a number of issues worthy of further

treatment.

7.1 Assessment and combination of expert information

There is a large literature on probability assessment. Much of this focusses on

experts who are not necessarily familiar with formal probability concepts. The

situation is somewhat simpler here, as the experts are used to dealing with

probabilities and thinking about the ways probabilities combine (but not

necessarily with assessing uncertainty about parameters in probabilistic terms).

Thinking about small probabilities is notoriously difficult; Kahneman and Tversky

(1974) began a large literature. What are the easiest probability questions to

assess when constructing a prior distribution? What are the most informative

questions, in terms of tying down prior parameters tightly? How should

information be fed back to the expert for revision? How should information from

several experts be combined? This is addressed by Garthwaite et al. (2005),

Lindley et al. (1979) and many others. Here there are essentially two reasonable

possibilities. Answers to the same question from different experts can simply be

entered into the GMM calculation as separate equations. Alternatively, they
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could be averaged as repeated measurements on the same equation (the difference

here is only one of weighting). Or, the prior specification could be done for each

expert m, and the results combined in a mixture, p(θ|e1, ..., em) =
∑

m αmp(θ|em),

where αm is the nonnegative weight assigned to the mth expert and
∑

m αm = 1.

This procedure should be combined with feedback to the experts and subsequent

revision.

7.2 Robustness

The issue of robustness of the inference about the default probability arises at the

validation stage. Modelers can expect to have to review their prior assessment

mechanisms with validators and to provide justification for the methods used.

This is no different from the requirements for any other method of estimation of

the default probability (and other required parameters). Prudent modelers will

report not only the posterior distribution of θ as well as its mean θ but summary

statistics, including in this case the MLE, and any interesting or unusual features

of the dataset. ”Surprises” in the data will have to be explained. This is not

specific to the Bayesian approach, but applicable to any method used. Bayesian

robustness issues and procedures for assessing robustness of results are described

by Berger and Berliner (1986). Some experimentation shows that inferences are

not particularly sensitive to specification of the parameters a and b, as long as r/n

is in the interval [a, b], as expected. Note that the posterior distribution with a

uniform prior on [a,b] is simply proportional to the likelihood in that interval

(elsewhere, the posterior is zero). Thus, primary attention should be paid to the

determination of α and β. Robustness is closely related to issues of supervision, as

supervisors will review both the modeling efforts and the validation procedures of

institutions.

7.3 Supervision

Subjectivity enters every statistical analysis. For many problems data information

is substantial and the subjective elements are perhaps less important. In the

present setting subjectivity enters explicitly in the specification of p(θ|r).
Subjectivity also enters in specification of p(D|θ), but we are used to that and the

explicit dependence on judgement is usually dropped. Similarly, subjectivity

enters in the classification of assets into ”homogeneous” groups and many other
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places in settings involving supervision. Supervisors generally insist that the

decisions made at the modeling level be logically based and validated. Thus,

supervisors are willing to accept subjective decisions as long as they are well

grounded. It is a small additional step to add subjective information about

plausible parameter values. There should be evidence that due consideration was

given to specification of p(θ|r) as well as the current requirement that p(D|θ) be

justified. As in the case of validation, examples can be provided and standards

set, while still relying on banks to perform their own analyses and validation.

Newsletter No. 6 was written by the Basel Committee Accord Implementation

Group’s Validation Subgroup in response to banking industry questions and

concerns regarding portfolios with limited loss data. Problem portfolios are those

for which a ”calculation based on historic losses ... would not be sufficiently

reliable to form the basis of a probability of default estimate....”(p.1) The

newsletter notes that problem portfolios are also those which ”may not have

incurred recent losses, but historical experience or other analysis might suggest

that there is a greater likelihood of losses than is captured in recent data.”(p.1).

The implication is that the actual probability of default is greater than the

measured default rate. This case clearly points to disagreement between data

information and a prior, where the prior is explicitly based on other data

(”historical experience,” not in the current sample) or expert opinion (”other

analysis”). The newsletter does not suggest impossible mechanical solutions and

instead sticks to sensible recommendations like getting more data. A section

heading in the newsletter reads as follows: ”A relative lack of loss data can at

times be compensated for by other methods for assessing risk parameters.” This is

precisely what I am proposing. In reference to the Basel II document itself (Basel

Committee on Banking Supervision (2004)), the newsletter quotes paragraph 449:

”Estimates must be based on historical experience and empirical evidence, and

not based purely on subjective or judgmental considerations.” This seems to

allow both data and nondata information, but not exclusively the latter, and thus

to hold open the possibility of combining data evidence with nondata evidence in

the formal system of conditional probability. Paragraph 448 notes that ”estimates

of PD, LGD and EAD must incorporate all relevant, material and available data,

information, and methods.” This seems to make a distinction between data and

other sources of information, which is consistent with our analysis.

One danger is that an institution could claim about a bizarre assessment that it is
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the prior assessment of an expert who predicts no defaults. And indeed, it might

be true. Some standards will be necessary, not just showing that the prior

uncertainly was rigorously assessed, but that it meets some general standards of

reliability. If asset groups were standardized across banks, then an agency could

provide standardized descriptions of expert opinion. Supervisors do not currently

seem to think such standardization appropriate or desirable. Could the agencies

nevertheless provide some guidance? I think this would be feasible. Newsletter 6

states (p.4), ”Supervisors expect to continue to share their experience in

implementing the Framework in the case of LDPs in order to promote

consistency.” Could this mean that supervisors will share expert information to

be incorporated into each bank’s analysis? Clearly, the role of the supervisor, used

to dealing with less formal subjectivity, will have to be defined when it comes to

formal (probabilistically described) subjective information.

8 Conclusion

I have considered inference about the default probability for a low-default portfolio

on the basis of data information and expert judgement. Examples consider sample

sizes of 100 and 300 for hypothetical portfolios of loans to very safe, highly-rated

large banks. The sample size of 100 is perhaps most realistic in this setting. I

have also represented the judgement of an expert in the form of a probability

distribution for combination with the likelihood function. This prior distribution

seems to reflect expert opinion fairly well. Errors, which would be corrected

through feedback and respecification in practice, are likely to introduce more

certainty into the distribution rather than less. It is possible to study the posterior

distributions for all of the most likely configurations of defaults in the samples. In

each case the modal number of defaults is small. I have reported results for zero

defaults through a number of defaults above any reasonable likelihood. In all of

these the sample information contributes rather little relative to the expert

information. Bounds for the likely value for the default probability (the most likely

value and the expected value) are fairly tight within the relevant range of data

possibilities. Thus, the data variability which is reasonably expected, and indeed

data variability which is highly unlikely, will not affect sensible inference about the

default probability beyond the second decimal place. These results raise issues

about how banks should treat estimated default probabilities and how supervisors
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should evaluate both procedures and outcomes for particular portfolios.
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