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The probability approach to uncertainty and modeling is applied to

default probability estimation. This issue has attracted attention as banks

contemplate the requirements of Basel II�s IRB rules. Nicholas M. Kiefer
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1 Introduction

Estimation of default probabilities (PD), loss given default (LGD, a fraction) and

exposure at default (EAD) for portfolio segments containing reasonably

homogeneous assets is essential to prudent risk management as well as for

compliance with Basel II rules for banks using the IRB approach to determine

capital requirementsBasel Committee on Banking Supervision (2004). Estimation

of small probabilities is tricky, and I will focus on estimating PD. This problem

has attracted considerable recent attention; see Basel Committee on Banking

Supervision (2005), Balthazar (2004), BBA, LIBA, and ISDA (2005),and Pluto

and Tasche (2005). This is an application in which data information is scarce

while expert information is available. The focus of this paper is on estimation of

the default probability for a risk bucket on the basis of historical information and

expert knowledge. Section 2 argues for the probability approach to uncertainty

measurement. The probability approach to default modeling is uncontroversial,

although perhaps the extent of the constraints imposed by the simple independent

Bernoulli model are underappreciated. This model is brie�y described in Section

3. In section 4 we argue that exactly the same considerations that lead to the

probability approach for defaults should lead to the probability approach to

default probabilities. As an example, we consider describing expert information in

the form of a Beta distribution on the Bernoulli parameter. The probability

approach allows coherent combination of expert and data information through

Bayes Rule, taken up in Section 5. Section 6 considers estimators of PD based on

the probability approach and compares them with alternatives, including the

maximum likelihood estimator (which is also the unbiased estimator) and a recent

suggestion based on the upper endpoint of a con�dence interval of prespeci�ed

coverage.

2 The Probabilistic Characterization of

Uncertainty

There are a number of arguments that uncertainty is best described in terms of

probabilities. These can be based on prediction scoring, avoidance of sure losses in

betting, pareto optimality, etc. Important references are De Finetti (1974),
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Lindley (1982), and Savage (1954). These arguments lead to a requirement of

coherence. This weak requirement is just that systems of numbers describing

uncertainty will not be such that another system can beat them in prediction, or

that, if used for betting, they will not admit sure losses. This simple requirement

is enough to insure that the predictions must combine like probabilities. Thus, let

E, F, denote events (e.g. "asset 2 and only asset 2, defaults"). Let x, y, z be

numbers used to quantify the uncertainty about events. The three properties

implied by coherence are:

P1: Convexity: 0 � x � 1:
P2: Additivity: Let x refer to the event E and y the event � E. Then x+ y = 1.
P3: Multiplication: Let x correspond to E, y to F given E, and z to E and F .

Then z = xy.

These three properties are often taken as de�ning a system of probabilities.

Of course, the probability approach to describing and modeling default

uncertainty is central to risk management and to the requirements of Basel II. In

the case of default modeling, where measuring and controlling risk is the aim, it is

widely accepted that the probability approach is the correct approach to default

uncertainty. There is no serious argument that the probability approach is wrong

or inappropriate for modeling uncertain future defaults as well as other unknowns.

The fact that probabilities combine in accordance with convexity, additivity and

multiplication is central for moving from probabilities of default on an asset, to

default rates in a segment, to rates in a portfolio, and to a default probability for

the bank. It is less well accepted that uncertainty about the unknown default

probability can be usefully modeled in exactly the same way for exactly the same

reasons.

3 A Statistical Model for Uncertain Defaults

The requirement of coherence prescribes relations among the probabilities of

related events, but does not specify what these probabilities are. The usual

approach in statistical modeling is to choose a statistical model that generates all

the relevant probabilities as a function of a small number of parameters. The

simplest and most common probability model for defaults of assets in a

homogeneous segment of a portfolio is the Bernoulli, in which the defaults are

independent across assets and over time, and defaults occur with common
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probability �: Note that speci�cation of this model requires expert judgement,

that is, information. We will denote the expert information by e. The role of

expert judgement is not usually explicitly indicated at this stage, so it is

worthwhile to point to its contribution. First, consider the statistical model. The

independent Bernouilli model is not the only possibility. Certainly independence

is a strong assumption and would have to be considered carefully. Second, are the

observations really identically distributed? Perhaps the default probabilities di¤er

across assets. Can this be modeled, perhaps on the basis of asset characteristics?

The usual requirements demand an annual default probability, estimated over a

sample long enough to cover a full cycle of economic conditions. Thus the

probability should be marginal with respect to external conditions. For speci�city

we will continue with the Bernoulli speci�cation. Let di indicate whether the ith

observation was a default (di = 1) or not (di = 0). The Bernoulli model for the

distribution of di is p(dij�; e) = �di(1� �)1�di. Let D = fdi; i = 1; :::; ng denote the
whole data set and r = r(D) =

P
i di the count of defaults. Then the joint

distribution of the data is

p(Dj�; e) =
Q
�di(1� �)1�di (3.1)

= �r(1� �)n�r

As a function of � for given data D this is the likelihood function L(�jD; e): Since
this distribution depends on the data D only through r (n is regarded as �xed),

the su¢ ciency principle implies that we can concentrate attention on the

distribution of r

p(rj�; e) =
�
n
r

�
�r(1� �)n�r (3.2)

a Binomial (n; �) distribution. This is a tremendous simpli�cation, since, for �xed

n, there are only a small number of likely defaults r, so analysis can be done for all

likely datasets.

4 A Statistical Model for Uncertain Default

Probabilities

Equation 3.2 is a model for describing default probabilities (probabilities for

di¤erent default con�gurations in a portfolio segment), but it is an incomplete
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model in that the parameter � remains unspeci�ed. The default probability � is

an unknown, but that doesn�t mean that nothing is known about its value. In

fact, defaults are widely studied and risk managers, modelers, validators, and

supervisors have detailed knowledge on values of � for particular portfolio

segments. The point is that � is unknown in the same sense that the future

default status of a particular asset is unknown. We have seen how uncertain

defaults can be modeled. The same methods can be used to model the

uncertainty about �: De�ne events Ei relevant to describing the uncertainty

about �; for example E1 = "� < :0001";E2 : "� < :0005; " etc. Uncertainty about

values of � are coherently described by probabilities on these events. We assemble

these probability assessments into a distribution describing the uncertainty about

�; p(�je): Our approach is a classical Bayesian approach as described in Rai¤a and
Schlaifer (1961) .

Now, p(�je) can be a quite general speci�cation, re�ecting in general the
assessments of uncertainty in an in�nity of possible events. This is in contrast

with the case of default con�gurations, in which there are only a �nite (though

usually large) number of possible default con�gurations. However, this should not

present an insurmountable problem We are quite willing to model the large

number of probabilities associated with the possible di¤erent default

con�gurations with a simple statistical model; in fact, a 1-parameter model. This

involves additional assumptions, including independence, but it simpli�es the

analysis and allows progress along empirical lines. The same can be done with the

prior speci�cation. We can �t a few probability assessments by an expert to a

suitable functional form and use that distribution to model prior uncertainty. Of

course, as with the likelihood approach, there is some approximation involved, and

care is necessary.

A convenient functional form, which we shall carry through this exposition, is

given by the beta distribution

p(�j�; �) = �(�+ �)

�(�)�(�)
���1(1� �)��1 (4.1)

which has mean �=(�+ �): variance ��=(�+ �)2(1 + �+ �) and mode

(�� 1)=(�+ � � 2). The special case of � = � = 1 is the uniform distribution on

the unit interval. Beta-binomial analysis is described in Rai¤a and Schlaifer

(1961) and DeGroot (1970).
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As an illustration, consider a segment of loans which might be in the middle of a

bank�s portfolio in terms of risk. These loans might be roughly equivalent to S&P

Baa or Moody�s BBB. Of course, the bulk of these loans are to unrated

companies and the bank has done their own rating to assign the loans to risk

"buckets.". We have consulted an experienced industry expert on these assets.

The expert puts the default probability for assets in this portfolio at 0.01 (an

expressed median value). When asked to condition on the probability being less

than 0.01, and then considering the conditional median the expert returned the

25% quantile 0.0075. The corresponding question returned the 75% point at

0.0125. Thus this expert reports a rather tight distribution centered on 0.01 and

nearly symmetric, probably re�ecting extensive experience with portfolios active

in this risk segment. We can �t this to a beta distribution, resulting in � = 6:8

and � = 647. This will be a su¢ cient representation of expert opinion for the

point being made in this paper. In practice, the elicitation process is extensive.

More information would be extracted from the expert, perhaps wider families of

distributions than the beta would be considered, and there would be some

iteration back and forth between the statistician and the expert Kiefer

(2006)Garthwaite, Kadane, and O�Hagan (2005).

5 Inference

Given the distribution p(�je); we can multiply the probabilities in accord with the
multiplication rule to obtain the joint distribution of r, the number of defaults,

and � :

p(r; �je) = p(rj�; e)p(�je)

from which we obtain the marginal (predictive) distribution of r,

p(rje) =
Z
p(r; �je)d� (5.1)

If the value of the parameter � is of main interest (rather than the number of

defaults) we can divide to obtain the conditional (posterior) distribution of � :

p(�jr; e) = p(rj�; e)p(�je)=p(rje) (5.2)
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which is Bayes rule DeGroot (1970).

Using speci�cations 3.2 in which expert opinion appears in the likelihood

speci�cation and 4.1 in which expert opinion is re�ected in the values of � and �

we �nd for the predictive distribution 5.1

p(rje) = �(r + �)�(n� r + �)�(�+ �)�(n+ 1)
�(r + 1)�(n� r + 1)�(�)�(�)�(n+ �+ �) (5.3)

and for the posterior 5.2

p(�jr; e) = �(�+ � + n)

�(�+ r)�(� + n� r)�
�+r�1(1� �)�+n�r�1 (5.4)

With our example prior distribution for expert opinion the predictive distributions

5.3 of the number of defaults in a portfolio segment of size 100 is plotted in Figure

1.

Figure 1: Predictive Distribution p(rje) for n=100

A candidate estimator for PD, suitable for plugging into the formulas given by the

Basel committee�s capital model, is

� = E(�jr; e) = (�+ r)=(�+ � + n) (5.5)
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We will not spend much e¤ort justifying the use of the mean; except to point out

that the mean is optimal with respect to squared error loss. For any summary

statistic, it is appropriate to report an indicator of its reliability, for example the

standard deviation

�� =
p
E(� � E(�jr; e))2 (5.6)

The posterior distributions for a sample size of 100 with 0,1, and 5 defaults is

plotted in Figure 2. These distributions represent in full the post data uncertainty

about � given the expert information and likely (and some unlikely) samples.

Figure 2: Posterior Distributions for r=0 (red), r=1 (green) and r=5 (blue).

6 Estimators for likely samples

We will advocate estimators based on the probability approach. In the examples

tabulated below we will focus on the posterior mean 5.5 as an estimator and the

posterior standard deviation 5.6 as a summary of its precision as an estimator. An

alternative estimator in wide use and an estimator which may be contemplated by

Basel II is the maximum likelihood estimator b� = r=n with estimated standard
error �b� =p(r=n)(1� r=n)=n: This is also the unbiased estimator. For large
samples and � well away from the extremes of 0 and 1, the MLE is a very good
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estimator in many applications, since the data evidence can be expected to

dominate prior evidence provided by the expert. That is, the data evidence is

accumulated as the data set increases in size, while the amount of expert evidence

is �xed. When that occurs, the likelihood approach and the probability approach

coincide as the sample becomes large. Thus, the likelihood estimator can be given

a slightly strained probability interpretation. However, for � near zero (the case in

applications we consider) this domination does not occur for any practical sample

size Kiefer (2006).

An estimator recently proposed is the con�dence estimator Pluto and Tasche

(2005). We make our point by considering a simple case of this estimator. The

authors give re�nements including extensions to simultaneous estimation of

default probabilities for di¤erent buckets. Our comments apply equally to these

cases. The principle attractive feature of the con�dence estimator is that it gives a

nonzero estimator in the case of zero observed defaults, a case which is extremely

likely to occur in low default (probability) portfolio segments. De�ne F(ujr,n) as
the probability of obtaining r or fewer successes in a sequence of n independent

Bernoulli trials each with success probability u. Thus

F (ujr; n) =
rX
i=0

�
n

i

�
ui(1� u)n�i

Then de�ne the estimator for a prespeci�ed number � 2 [0; 1] chosen by the
modeler,

�� = F
�1(�jr; n): (6.1)

For the case r=0, the estimator takes a simple form, �� = 1� �(1=n): A few
comments on this procedure are in order. Although we criticize this estimator on

both fundamentals and performance, it does represent a major advance in

thinking about default probabilities. Speci�cally, it suggests that the unbiased

estimator can be abandoned, and that a practical estimator might adjust the

unbiased estimator toward more likely (in this case nonzero) values. One wonders

why it is considered easier to think about realistic values for � than it is to think

about � directly. Pluto and Tasche interpret the choice of � as a speci�cation of

"conservatism." In any case, there does not seem to be a direct probability

interpretation of the estimator ��: Rather, �� is interpreted as that value of � at

which the probability of seeing r or fewer defaults is equal to �: It is di¢ cult to see

9



a justi�cation for this approach, other than the appeal of bounding the estimate

away from zero (provided �; a choice parameter for the modeler, is bounded away

from zero). Of course, the posterior mean has a direct probability interpretation.

The maximum likelihood estimator has an approximate probability interpretation

as well as an interpretation as that value of � which maximizes the probability of

seeing the sample actually observed.

The performance of the alternative estimators is given in Table 1 for n=100 and

all plausible values of the number of realized defaults. Note that there is no

appealing measure of the sampling variance o¤ered for ��: Results are given based

on the posterior distribution using our expert�s information; hypothetical

information from an alternative, less con�dent expert with � = 1:5; and

� = 150;(this expert has approximately twice the prior standard deviation as our

actual expert); from the likelihood alone, and the con�dence estimator �0:1:

Table 1: Estimates and associated standard errors
n r � �� �lce ��lce

b� �b� �0:1

100 0 0.0090 0.0034 0.0060 0.0048 0 0 0.0228

100 1 0.0103 0.0037 0.0099 0.0062 0.01 0.0099 0.0383

100 2 0.0117 0.0039 0.0139 0.0073 0.02 0.0140 0.0523

100 3 0.0130 0.0041 0.0179 0.0083 0.03 0.0171 0.0656

100 4 0.0143 0.0043 0.0219 0.0092 0.04 0.0196 0.0783

100 5 0.0157 0.0045 0.0258 0.0100 0.05 0.0218 0.0908
Notes: The posterior mean and standard deviation, the same based on a less

con�dent expert, the MLE and its s.e., the con�dence estimator.

As expected, the posterior mean for our expert is tightly clustered around the

prior expectation (about 0.0104) for the sample size 100, even with the unlikely

value of 5 defaults. Our hypothetical less-con�dent expert also supplies estimators

which do not seem unreasonable, though of course they are much more sensitive to

sample variation. The MLE re�ects the well-appreciated problem that the

estimator is zero when zero defaults are observed; further the estimated standard

error (not an appropriate estimator) is also zero, showing perhaps more con�dence

than justi�ed. The con�dence estimator depends on the user-speci�ed �; the

value chosen 0.10, is suggested in Pluto and Tasche (2005); the values 0.5, 0.25,

0.05, 0.01 and 0.001 are also considered in that paper. For comparison, the �� for
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these values or � and for r=0 are 0.007, 0.014, 0.030, 0.045, and 0.067. The

con�dence estimator is often greater than the alternative estimators and always

greater than the MLE, re�ecting what the proposers call converatism. It is

conservative in that it certainly overstates risk relative to the MLE, and this

might be an area of application in which upside errors are less problematic than

downside errors. There is no proposed or obvious estimator for the con�dence one

should have in the precision of the con�dence estimator.

Let us confront these estimators with a stress test, in the spirit of the validation

exercises expected of �nancial institutions OCC (2006). Table 2 reports the same

complement of estimates and standard errors, now for a sample of size 10 and a

sample of size 1000.

Table 2: Estimates and associated standard errors, Stress Test
n r � �� �lce ��lce

b� �b� �0:1

10 0 0.0102 0.0039 0.0093 0.0075 0 0 0.2057

10 1 0.0118 0.0044 0.0155 0.0097 0.1 0.0949 0.3368

10 2 0.0133 0.0044 0.0217 0.0114 0.2 0.1265 0.4496

1000 0 0.0041 0.0016 0.0013 0.0011 0 0 0.0023

1000 10 0.0102 0.0025 0.0100 0.0029 0.01 0.0031 0.0154

1000 50 0.0343 0.0045 0.0447 0.0061 0.05 0.0069 0.0600
Notes: The posterior mean and standard deviation, the same based on a less

con�dent expert, the MLE and its s.e., the con�dence estimator.

For the very small sample size the probability estimators both appear reasonable.

The preferred estimator is the one that actually re�ects expert judgement, given

in columns 3 and 4. The MLE is very sensitive to the number of defaults and

gives the estimator zero for zero-default samples. The con�dence estimator

appears preposterous. For very large samples all estimators work better, as

expected, though the experts pull estimators toward the prior means while the

con�dence estimator is regularly above the likelihood estimator. The MLE for r=0

is again a potential problem, but this is a very unlikely sample for n=1000.

Two �nal comments on the con�dence estimator are appropriate. First, consider

an example in which a sample of 100 observations is drawn from a

Binomial(100,0.01) distribution. A zero will be observed with probability 0.366;

the MLE will be zero and �0:1 will be positive. This might be considered desirable,
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though our expert might regard the estimate 0.023 (see Table 1) quite surprising.

It is, after all, more than twice the true value in our example. With probability

0.634, the number of defaults will be positive and the con�dence estimator will

substantially overestimate the true value of the default probability. Second,

consider a model for nondefaults - survival. In our samples with r defaults, there

are n� r survivals. One might consider estimating a survival probability � rather
than the default probability �. Of course, � = 1� �, so the associated prior is
obtained by a simple linear change of variables. In our example, if the prior on �

has parameters (�; �); then the prior on � has parameters (�; �):There is no new

prior information imposed by looking at the singular joint distribution, and there

is no new data information in the distribution of n� r that is not in the
distribution of r. Thus, we would not in practice analyze these probabilities

separately. Clearly, in the probability approach, E(�je) = 1� E(�je) and
E(�jr; e) = 1� E(�jr; e): Since b� = (n� r)=n, we have b� = 1� b� in the likelihood
approach as well. Consider, however, the estimators �0:1 and �0:1(de�ned by

interchanging r and n-r in 6.1). For a sample of size 100 with 5 defaults, we �nd

�0:1 =0.975 and �0:1 =0.091. Referring to our discussion above (Section 2), we see

that as descriptions of the uncertainties regarding defaults, the con�dence

estimators violate property P2, additivity, and hence are incoherent.

7 Conclusion

Expert information is crucial in risk management and speci�cally default

modeling. This information is typically based on a mix of subjective judgement,

related information not speci�cally modeled, and long experience with related

data sets. The expert information appears in the assignment of assets to

segments on the basis of their risk, in the de�nitions of the segments, in the choice

of sample period and in the chosen statistical model. This paper argues that the

expert information on the likely values of the parameters of the risk model should

also be formally incorporated in the analysis.

Any measure of uncertainty should satisfy a reasonable system of properties

known as coherence. The probability approach to modeling defaults is coherent,

widely accepted and uncontroversial. The same justifying arguments imply that

uncertainty about the unknown default rates should be modeled by probabilities.

In the case of default modeling, a parametric model is customary. We use the
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same approach to modeling expert information about the unknown parameters -

using answers to questions about the unknown default rate to �t a parametric

model to the expert�s beliefs. In practice, this procedure is intensive and requires

more e¤ort and expert involvement than that given in our example. With this

probability distribution in hand, updating beliefs with data information entering

through the likelihood function is straightforward using Bayes Rule.

Our examples illustrate the application of the probability approach. We have

used the opinions of an expert on the likely default probabilities for a risk segment

in the middle of a bank�s portfolio. The expert was quite certain about the likely

ranges of the default probability. As a check, we also constructed a hypothetical,

less-con�dent expert and calculated the posterior statistics. The probability

approach is feasible as well as logical. We considered the likelihood approach,

perhaps appropriate for very large samples and risky portfolio segments. As often

noted, that approach gives an estimator of zero for default probabilities in

segments with no defaults in the sample. That value is considered unacceptable.

A recent proposal for estimating positive default probabilities using the upper

endpoint of an approximate con�dence interval for b� with speci�ed coverage is also
examined and is shown to be incoherent.
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