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Abstract

Many model selection or non-nested hypothesis testing procedures are based implicitly

or explicitly on Kullback-Leibler Information Criterion (KLIC). We consider the non-nested

hypothesis testing of Vuong (1989) for which the null hypothesis is that the candidate models are

equidistant in KLIC from an unknown true model. The test statistic is asymptotically standard

normal. We propose a higher order asymptotic bias correction of the test statistic and show that

it is invariant with respect to reparametrization. Thus, the simplest possible parameterization

can be used when calculating the test statistic. The reparametrization invariance leads to the

differential geometrical approach where coordinate system invariant quantities like curvature

are useful for understanding the corrections. The relationship of the correction factor with the

preferred point geometry of Critchley et al. (1993, 1994) and the expected geometry of Amari

(1982) is illustrated.
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1 Introduction

Non-nested hypothesis testing considers two separate parametric families of distributions. Unlike

nested hypothesis testing where a smaller (restricted) model is typically a natural candidate for a

null model, defining a null hypothesis or a true model is a subtle issue in non-nested testing. The

true model can lie in one of the competing models, but it is not clear which model should be given

the role of the null and which the alternative. However many non-nested tests are based on this

approach. This includes the pioneering work of Cox (1961, 1962) based on log likelihood ratios, and

the popular J-test of Davidson and MacKinnon (1981) based on the artificial nesting approach.

On the other hand, Vuong (1989) proposed to test the null hypothesis that competing models are

equidistant from an unknown true model.

Vuong’s test treats the two competing models symmetrically and the divergence from the true

model to the candidate models is measured by Kullback-Leibler Information criterion (KLIC) (rel-

ative entropy, Kullback and Leibler (1951)) between the unknown true model φ and a pseudo-true

model. A pseudo-true model is defined as the closest member of the candidate parametric family

in KLIC. The function KLIC, or more generally a divergence function, is always non-negative and

equal to zero if and only if the two models have identical distributions (see Csiszár (1967a,b, 1975)).

Noting that KLIC is not metric, we clarify that the divergence in Vuong’s test is based on KLIC

from the true model to the pseudo-true models not vice versa. Vuong’s approach does not require

specifying a true model φ, since the difference in KLIC for candidate models 1 and 2 is given by

KLIC1 −KLIC2 = Eφ(lφ − l1)− Eφ(lφ − l2) (1.1)

= Eφ(l2 − l1), (1.2)

where lφ, l1, and l2 are log likelihood functions of the true model φ, and the pseudo-true models

of the competing models 1 and 2 respectively. Under the null that Eφ(l2 − l1) = 0, Vuong (1989)

proposed a normalized sample mean version of equation (1.2) for the test statistic.

Finite sample properties of this test statistic are not studied comprehensively. Recently, Rivers

and Vuong (2002) and Choi and Kiefer (2005) extended the idea to dynamic models. Choi and
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Kiefer (2005) also studied the finite sample properties of their test statistics for dynamic models

and proposed to use the fixed-b asymptotics developed by Kiefer and Vogelsang (2005). They

compared the performance of the fixed-b asymptotic approximation with bootstrap approaches.

That approach uses a different asymptotic approximation and allows quite general autocorrelation.

In this paper, we propose to correct the test statistic to get better finite sample performance in

the case of independent observations. Our approach is related to the idea of the Bartlett correction,

extended to cover misspecified models. See Kent (1982) also for the properties of likelihood ratio

statistics in misspecified models. We correct the bias of order O(1/
√

n) from the numerator of

Vuong’s test statistic. The proposed bias correction term can be estimated consistently. A similar

approach to bias correction was used in Takeuchi’s Information Criterion (TIC, Takeuchi (1976))

which is a variant of Akaike’s Information Criterion (AIC, Akaike (1973)) for possible misspecifica-

tion of the models.

The bias correction term is shown to be invariant with respect to reparameterization, hence

differential geometrical approaches are used to understand the effect of the correction factor. Dif-

ferential geometrical quantities like curvatures can describe parameterization invariant statistical

quantities such as the Bartlett correction. See Barndorff-Nielsen and Cox (1984) and McCullagh

and Cox (1986) for the Bartlett correction for correctly specified models. For exponential family

models, we show that our bias correction factor can be decomposed into two parts. One part is re-

lated to the degree of misspecification and the other is generated by the curvatures of the candidate

models. The former is related to the preferred point geometry of Critchley et al. (1993, 1994) and

is a model-independent constant when the statistical manifold is totally flat as defined in Critchley

et al. (1994). The latter is related to the embedding curvature of Efron (1975, 1978) and Amari

(1982). The embedding curvature vanishes if the model is a linear exponential family. Throughout

the paper we will consider i.i.d. samples and assume the regularity conditions in Amari (1985) p.16.
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2 Higher order bias correction of the test statistic

2.1 Main Results

Consider two candidate models p1(y|θ1) and p2(y|θ2) with log likelihood functions l1(θ1) and l2(θ2)

(we will denote pj(y|θj) as p(θj), and lj(θj) as l(θj) for models j = 1, 2, when it does not cause

confusion). When the models are misspecified, the probability limits θ∗1 and θ∗2 of the MLEs θ̂1 and

θ̂2 are called the pseudo-true values and the distributions p(θ∗1) and p(θ∗2) are pseudo-true models.

The pseudo-true values also minimize KLIC from the true model. The non-nested test of Vuong

(1989) is based on the difference in KLIC from the true model p0 to the pseudo-true models p(θ∗1)

and p(θ∗2). The null hypothesis is that they are equidistant, i.e.

KLIC(p0, p(θ∗1)) = KLIC(p0, p(θ∗2)), (2.1)

or equivalently,

KLIC(p0, p(θ∗1))−KLIC(p0, p(θ∗2)) = E0 {(l(θ∗2)− l0)− (l(θ∗1)− l0)} (2.2)

= E0(l(θ∗2)− l(θ∗1)) = 0, (2.3)

where E0 is the expectation with respect to p0. We consider whichever closest to the true model in

this criterion as a better model.

Under Vuong’s null hypothesis, the test statistic tn (with i.i.d. data) is asymptotically normal

and given by

tn =
(l(θ̂2)− l(θ̂1))/

√
n√

V̂n

, (2.4)

4



where θ̂1 and θ̂2 are the maximum likelihood estimators (MLEs), and denoting

l(θj) =
n∑

i=1

li(θj), (2.5)

l̄(θj) =
1
n

n∑

i=1

li(θj), (2.6)

for j = 1, 2, the variance V is estimated by

V̂n =
1
n

n∑

i=1

{
(li(θ̂2)− l̄(θ̂2))− (li(θ̂1)− l̄(θ̂1))

}2

. (2.7)

This test statistic requires that no model contains the true model. If one does, the other model must

also contain the true model to be equidistant in KLIC from the true model. Thus they are identical

and the test makes no sense. We also assume that the pseudo-true models are not identical, i.e.

p(θ∗1) 6= p(θ∗2), in which case the test statistic also degenerates. See Vuong (1989) for a discussion

of testing the degeneracy of the test statistic. In this paper, the two models are non-nested in the

sense that their pseudo-true models are not identical to exclude the degenerate case. But they can

generally intersect at other parameter values since we are interested in the local behavior around

the pseudo-true models.

We develop a higher order bias correction for the numerator of the test statistic in equation

(2.4) decomposing the term l(θ̂2)− l(θ̂1) by

l(θ̂2)− l(θ̂1) = (l(θ∗2)− l(θ∗1)) + (l(θ̂2)− l(θ∗2))− (l(θ̂1)− l(θ∗1)) (2.8)

= S1 + S2, (2.9)

where S1 = l(θ∗2) − l(θ∗1) is the log likelihood ratio of the pseudo-true models, and S2 = (l(θ̂2) −
l(θ∗2))− (l(θ̂1)− l(θ∗1)) is the remainder coming from the estimation of the pseudo-true models. The

null hypothesis implies

E0(S1) = E0(l(θ∗2)− l(θ∗1)) = 0. (2.10)
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Therefore the numerator (under the null) has a bias equal to E0(S2). Using the expansion

l(θ̂j)− l(θ∗j ) = −1
2
tr{H(θ∗j )−1s(θ∗j )s(θ∗j )T }+ Op(1/

√
n), (2.11)

for j = 1, 2, where H(θ∗j ) = E0h(θ∗j ) =
∑n

i=1 E0hi(θ∗j ) is the sum of the expected Hessians hi(θj),

and s(θ∗j ) =
∑n

i=1 si(θ∗j ) is the score function of the model j, the bias E0(S2) can be calculated by

E0(S2) = E0

{
(l(θ̂2)− l(θ∗2))− (l(θ̂1)− l(θ∗1))

}
(2.12)

= −1
2
tr{H(θ∗2)−1J(θ∗2)}+

1
2
tr{H(θ∗1)−1J(θ∗1)}+ O(1/

√
n), (2.13)

= −1
2
tr{H̄(θ∗2)−1J̄(θ∗2)}+

1
2
tr{H̄(θ∗1)−1J̄(θ∗1)}+ O(1/

√
n), (2.14)

where

J(θ∗j ) = E0(s(θ∗j )s(θ∗j )T ) (2.15)

J̄(θ∗j ) =
J(θ∗j )

n
, (2.16)

H̄(θ∗j ) =
H(θ∗j )

n
, (2.17)

for j = 1, 2. We propose the correction from the first order term in equation (2.14),

b = −1
2
tr{H̄(θ∗2)−1J̄(θ∗2)}+

1
2
tr{H̄(θ∗1)−1J̄(θ∗1)}. (2.18)

The term tr{H̄(θ∗j )−1J̄(θ∗j )} in b can be quite large when many parameters are used, and can be

zero if the model is defined as a point, say θ = θ∗.

Theorem 2.1. Let the bias correction b̂ be

b̂ = −1
2
tr{H̄(θ̂2)−1J̄(θ̂2)}+

1
2
tr{H̄(θ̂1)−1J̄(θ̂1)}, (2.19)
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where θ̂1 and θ̂2 are (quasi) MLEs. The bias-corrected test statistic t̃n is given by

t̃n =
(l(θ̂2)− l(θ̂1)− b̂)/

√
n√

V̂n

, (2.20)

and the bias of the numerator is of order O(1/n).

Proof. The order of the bias of the numerator immediately follows from θ̂j − θ∗j = Op(1/
√

n) for

j = 1, 2 and

b̂ = b + Op(1/
√

n).

The proposed bias correction can be shown to be a part of the higher (1/
√

n) order term in

the Edgeworth expansion of the test statistic. The other part is related to the skewness of the

numerator.

The following theorem shows that the bias b in equation (2.18) is reparameterization invariant

and therefore a geometric object.

Theorem 2.2. Let θ be the original parameterization and ξ(θ) be a locally one-to-one reparame-

terization of θ with ξ∗ = ξ(θ∗). Then

tr{H(θ∗)−1J(θ∗)} (2.21)

in equation (2.18) is invariant with respect to reparameterization ξ(θ), i.e.

tr{H(θ∗)−1J(θ∗)} = tr{H(ξ∗)−1J(ξ∗)}. (2.22)

Proof. Let the matrix D(ξ) = ∂θ(ξ)T /∂ξ. Since the transformation is locally isomorphic, D(ξ∗) is

invertible. The score function is

s(ξ) = D(ξ)s(θ(ξ)), (2.23)
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and its variance J(ξ) is given by

J(ξ) = D(ξ)J(θ(ξ))D(ξ)T , (2.24)

showing that J(θ∗) is a tensor. The (a, b) element hab(ξ) of the Hessian h(ξ) = [hab(ξ)] is

hab(ξ) =
∑

k,l

Dak(ξ)hkl(θ(ξ))Dbl(ξ) +
∑

k

∂Dak(ξ)/∂ξb sk(θ(ξ)), (2.25)

and the second summation in the equation (2.25) above has zero expectation at ξ∗ since E0{sk(θ(ξ∗))} =

0 by definition of the pseudo-true value. Therefore we have

E0(hab(ξ∗)) = Hab(ξ∗) =
∑

k,l

Dak(ξ∗)Hkl(θ(ξ∗))Dbl(ξ∗), (2.26)

which also can be written as

H(ξ∗) = D(ξ∗)H(θ(ξ∗))D(ξ∗)T , (2.27)

showing that H(θ∗) is also a tensor. From the invertibility of D(ξ∗), we have

tr{H(ξ∗)−1J(ξ∗)} = tr
[{

D(ξ∗)H(θ(ξ∗))D(ξ∗)T
}−1

D(ξ∗)J(θ(ξ∗))D(ξ∗)T
]

(2.28)

= tr{H(θ∗)−1J(θ∗)}. (2.29)

The theorem above makes it possible to use any convenient parameterization for calculation

of the bias. We use locally affine parameterizations in which the Fisher information becomes an

identity matrix at a particular point of interest (in our case, the pseudo-true models). A globally

affine parameterization in which the information matrix is identity everywhere does not generally

exist except in one-dimensional parameter models. See Amari (1985) for details.

The invariance leads to the interpretation of the bias correction term using differential geometri-

cal quantities. We next study the bias-corrected test statistic in exponential families and highlight
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the differential geometrical interpretation. Extensions of the interpretation to general families of

distributions are discussed.

2.2 Curved exponential families

Curved exponential family (CEF) distributions are obtained from (linear) exponential family dis-

tributions by reducing the parameter dimension through restriction (Efron (1975)). The dimension

of the sufficient statistic is unchanged, unless the restricted model is also linear. Efron (1975) notes

that MLE entails an information loss by summarizing the sufficient statistic with a lower dimen-

sional statistic. Efron defined the statistical curvature as a measure of how far the model is from

the full exponential family where no information loss occurs. His curvature is invariant to repa-

rameterization and has crucial implications for the information loss in using the MLE rather than

the sufficient statistic to summarize the data. The applications of curvature to the higher-order

efficiency for one dimensional parameter were studied by Efron (1975, 1978), and Eguchi (1984).

Multi-dimensional parameter CEFs were studied in Amari (1982) and Amari and Kumon (1988b).

The differential geometrical theory of higher-order asymptotics of statistical test and interval esti-

mators was developed in Amari and Kumon (1983) and Amari and Kumon (1988a). Kass and Vos

(1997) summarize the developments in this area. See Barndorff-Nielsen (1978), Barndorff-Nielsen

et al. (1986), and Brown (1986). Many econometric models, including simultaneous equations mod-

els, finite order AR models, and linear regression models with nonlinear restrictions on parameters

are known to be CEFs (see Van Garderen (1996, 1997)).

The density p0(y|η) of a full exponential family distribution in its canonical (or natural), linear,

parameterization η can be written as

p0(y|η) = exp
[
n

{
ȳT η − ψ(η)

}]
f(y), (2.30)

where n is the number of i.i.d. observations, ȳ is the k-dimensional vector of sufficient statistics, η is

the k-dimensional parameter vector, and y is the n-dimensional vector of observations. The function

ψ(η), the log of the normalizing constant, is the cumulant generating function. The cumulants of
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one observation y1 are obtained by differentiating ψ(η). The Fisher information matrix of one

observation with respect to the natural parameterization is ψ′′(η).

A curved exponential family (CEF) is a lower dimensional reparameterization θ of η, and the

density is given by

p(y|θ) = exp
[
n

{
ȳT η(θ)− ψ(η(θ))

}]
f(y), (2.31)

where θ is an m < k dimensional parameter vector. If η(θ) is affine, p(y|θ) becomes a lower

dimensional full exponential family. Efron (1975) defined the statistical curvature κ(θ) at θ for an

one-dimensional CEF (m = 1) by

κ(θ) = ‖η′(θ)‖−3
η(θ)

[
‖η′(θ)‖2η(θ) ‖η′′(θ)‖

2
η(θ) − 〈η′(θ), η′′(θ)〉

2
η(θ)

]1/2

, (2.32)

where g(η(θ)) = ∂2ψ (η(θ)) /∂η∂ηT is the (Fisher) information matrix of the full exponential family,

〈x1, x2〉η(θ) = x′1g(η(θ))x2 is the inner product of x1 and x2 with respect to the metric g(η(θ)),

and ‖x1‖2η(θ) = 〈x1, x1〉η(θ) is the norm of x1. Intuitively, it is the standardized (rescaled to be

parameterization invariant) norm of η′′(θ) projected onto the space orthogonal to the space spanned

by η′(θ) with respect to the metric defined by the Fisher information matrix. The curvature is

invariant with respect to a reparameterization of θ and is equal to zero for a full exponential family.

Efron (1975) showed this curvature has an important implication in the higher order efficiency of

estimators, especially MLEs. The curvature for a multi-dimensional CEF is more complicated.

Amari (1982) generalized the notion of the Efron’s curvature. He called the Efron’s curvature the

1-curvature (among more general α-curvatures). It is also called the exponential curvature since it

vanishes in linear exponential families.

We consider two CEFs p(θ1) and p(θ2), where θ1 and θ2 are m1,m2 < k dimensional parameter

vectors respectively, as in equation (2.31) in a k-dimensional full exponential family of equation

(2.30). These two families are the candidates for the non-nested test. Let p0(y|η = φ) be the true

model in the full exponential family which does not lie in either of the candidate models, and θ∗1

and θ∗2 be the pseudo-true values of model 1 and 2. Thus η(θ1) 6= φ and η(θ1) 6= φ for any value of

θ1 and θ2. The sufficient statistic is ȳ = 1
n

∑n
i=1 yi,and µ = E0 (ȳ) is the mean parameter vector of
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the true model. (Note that φ = η(µ) is the natural parameter vector of the true model and they

have the relationship µ = ψ′(φ)). The (uncorrected) test statistic tn in equation (2.4) is given by

tn =
l(θ̂2)− l(θ̂1)/

√
n√

V̂n

(2.33)

=

√
n

[
ȳT (η(θ̂2)− η(θ̂1))−

{
ψ(η(θ̂2)− ψ(η(θ̂1)))

}]
√

V̂n

, (2.34)

where θ̂1, θ̂2 are MLEs, and

V̂n = (η(θ̂2)− η(θ̂1))T g(η(ȳ))(η(θ̂2)− η(θ̂1)), (2.35)

is the variance estimator. The estimator g(η(ȳ)) of the information matrix g(η(µ)) for one obser-

vation at the true model η = φ is calculated by

g(η(ȳ)) =
1
n

n∑

i=1

(yi − ȳ) (yi − ȳ)T
, (2.36)

or using the Hessian function g(η(ȳ)) = ψ′′(η(ȳ)).

2.3 Bias correction for one-dimensional curved exponential models

For one-dimensional parameter CEFs, the score and Hessian functions become

s(θ) = n {ȳ − ψ′(η(θ))}T
η′(θ), (2.37)

h(θ) = n
[
{ȳ − ψ′(η(θ))}T

η′′(θ)− η′(θ)T ψ′′(η(θ))η′(θ)
]

(2.38)

= n
[
{ȳ − ψ′(η(θ))}T

η′′(θ)− i(θ)
]
, (2.39)

where i(θ) = η′(θ)T ψ′′(η(θ))η′(θ) is the Fisher information of one observation at η(θ). We will

write ψ′(η(θ)) = ψ′(θ) and ψ′′(η(θ)) = ψ′′(θ) for simplicity. The expected score E {s(θ∗)} and the
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average of the expected Hessian H̄(θ∗) = H(θ∗)/n at the pseudo-true value θ∗ are

E {s(θ∗)} = n(µ− ψ′(θ∗))T η′(θ∗) = 0, (2.40)

H̄(θ∗) =
[
(µ− ψ′(θ∗))T η′′(θ∗)− i(θ∗)

]
. (2.41)

Note that when the CEF contains the true model, we have µ = ψ′(θ∗), and equation (2.41) becomes

H̄(θ∗) = −η′(θ∗)T ψ′′(θ∗)η′(θ∗) = −i(θ∗). (2.42)

When the CEF is misspecified, we have µ−ψ′(θ∗) 6= 0, but by the orthogonality of µ−ψ′(θ∗) and

η′(θ∗), equation (2.40) still holds. However, we do not have the Fisher information equality in this

case. The variance of the score J̄(θ∗) of one observation is

J̄(θ) = η′(θ∗)T g(φ)η′(θ∗), (2.43)

where η = φ is the true model.

When the parameter θ satisfies

i(θ) = ‖η′(θ)‖2η(θ) = 1, for all θ, (2.44)

the parameterization is called an arclength parameterization or 0-affine. Since the bias correction

is invariant, we are free to use the arclength parameterization.

If we decompose η′′(θ) into a tangential component (η′′(θ))T and a normal component (η′′(θ))N

to η′(θ) with respect to the metric g(η(θ)), i.e.

η′′(θ) = (η′′(θ))T + (η′′(θ))N , (2.45)

and

〈η′(θ), (η′′(θ))N 〉η(θ)
= 0, (2.46)
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then, with the arclength parameterization, there exists a useful relationship

κ(θ) =‖ (η′′(θ))N ‖η(θ), (2.47)

between the curvature κ(θ) and the norm of (η′′(θ))N .

Lemma 2.3. Using the arclength parameterization, the bias in equation (2.18) can be calculated

from

tr{H̄(θ∗j )−1J̄(θ∗j )} =
η′(θ∗j )T g(φ)η′(θ∗j )〈

(µ− ψ′(θ∗j ))T g(η(θ∗j ))−1,
(
η′′(θ∗j )

)
N

〉
η(θ)

− 1
, (2.48)

for model j = 1, 2. If model j is exponential flat, we have

tr{H̄(θ∗j )−1J̄(θ∗j )} = −η′(θ∗j )T g(φ)η′(θ∗j ). (2.49)

Proof. Using equation (2.41), (2.43) and i(θ∗j ) = 1, we have

tr{H̄(θ∗j )−1J̄(θ∗j )} =
η′(θ∗j )T g(φ)η′(θ∗j )

(µ− ψ′(θ∗j ))T η′′(θ∗j )− 1
, (2.50)

for each model j = 1, 2. The term (µ− ψ′(θ∗j ))T η′′(θ∗j ) in the denominator can be rewritten as

(µ− ψ′(θ∗j ))T η′′(θ∗j ) =
〈
(µ− ψ′(θ∗j ))T g(η(θ∗j ))−1, η′′(θ∗j )

〉
η(θ)

. (2.51)

Since the orthogonality condition in equation (2.40) implies (µ− ψ′(θ∗j ))T g(η(θ∗j ))−1 is orthogonal

to η′(θ∗j ), i.e.

(µ− ψ′(θ∗))T η′(θ∗) =
〈
(µ− ψ′(θ∗j ))T g(η(θ∗j ))−1, η′(θ∗j )

〉
η(θ)

= 0, (2.52)

we have

(µ− ψ′(θ∗j ))T η′′(θ∗j ) =
〈
(µ− ψ′(θ∗j ))T g(η(θ∗j ))−1,

(
η′′(θ∗j )

)
N

〉
η(θ)

, (2.53)

from equation (2.45) and (2.51).
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When the model is exponential flat, κ(θ∗j ) =
∥∥∥
(
η′′(θ∗j )

)
N

∥∥∥
η(θ)

= 0 gives the second result.

We showed that the denominator of equation (2.48) is related to the curvature κ(θ∗j ) at the

pseudo-true model, and the numerator is related to the information matrix g(φ) at the true model

φ. In general, g(φ) is different from g(η(θ∗j )) because of misspecification (η(θ∗j ) 6= φ). But if the

information matrix of the full exponential family is constant, we have g(η(θ∗j )) = g(φ), which implies

that the numerator

η′(θ∗j )T g(φ)η′(θ∗j ) = 1, (2.54)

by the arclength parameterization. The condition g(η(θ)) = g(φ) is satisfied by a totally flat

manifold in exponential families.

Definition 2.4 (Critchley et al. (1994)). For a fixed (true) model φ, define

µφ(η) = Eφ(s(η)), (2.55)

gφ(η) = V arφ(s(η)), (2.56)

where s(η) is the score function and the expectations are taken with respect to the fixed model η = φ,

then the preferred point geometry, (M,µφ(η), gφ(η)) is gφ-flat if there exits a coordinate system η

for which gφ is constant for all η. The η coordinates are called gφ-affine. M is totally flat, if there

exists a coordinate system η for which gφ is a constant for all η and µφ is a linear function of η−φ.

When an exponential family is totally flat, g(η) is constant (see Theorem 4 in Critchley et al.

(1994)) and the natural parameterization is α-affine for all real α in the sense of Amari (1982). The

total flatness assumption is quite restrictive. An example would be a normal model with a known

variance matrix. We have the following theorem about the relationship between the geometry of

the models and the bias.

Theorem 2.5. For one dimensional curved exponential family, the log of −tr{H̄(θ∗j )−1J̄(θ∗j )} can

be decomposed by

ln
(−tr{H̄(θ∗j )−1J̄(θ∗j )}) = P + K, (2.57)
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where P = ln
{
η′(θ∗j )T g(φ)η′(θ∗j )

}
and K = − ln

{
1− (µ− ψ′(θ∗j ))T η′′(θ∗j )

}
for the candidate mod-

els j = 1, 2.. If the model is correctly specified, then P = K = 0. When the model is misspecified,

P = 0 if the full exponential family is totally flat as defined in Critchley et al. (1994), and K = 0

if the exponential curvature of Efron (1975) is zero at the pseudo-true model.

Proof. The decomposition directly follows from equation 2.48 using the arclength parameterization.

If the model is correctly specified (φ = η(θ∗j )), we have η′(θ∗j )T g(φ)η′(θ∗j ) = η′(θ∗j )T g(η(θ∗j ))η′(θ∗j ) =
∥∥η′(θ∗j )

∥∥2

η(θ)
= 1 which implies P = 0, and K = 0 from µ = ψ′(θ∗j ). If the model is misspecified,

φ 6= η(θ∗j ), and if the exponential family is totally flat, the information matrix g(η) is constant from

the Theorem 4 in Critchley et al. (1994), therefore g(η(θ∗j )) = g(φ) gives P = 0. Also if the model

has zero exponential curvature, K = 0 from Lemma 2.3.

2.4 Multi-parameter CEFs

When the parameter θ is m-dimensional and η is k-dimensional (k > m), the score vector at θ is

given by

s(θ) = nη′(θ)T (ȳ − ψ′(θ)), (2.58)

where η′(θ) is now the k × m matrix ∂η(θ)/∂θ′ = [∂η(θ)/∂θ1 ... ∂η(θ)/∂θm] , and the variance

J̄(θ∗j ) = J(θ∗j )/n of the score vector s(θ∗j ) at the pseudo-true model for models j = 1, 2, is given by

J̄(θ∗j ) = η′(θ∗j )T g(φ)η′(θ∗j ). (2.59)

The Hessian matrix h(θ) has (a, b) elements

hab(θ) = n
[
(ȳ − ψ′(η(θ)))T ηab(θ)− iab(θ)

]
, (2.60)

where ηab(θ) = ∂2η(θ)/∂θa∂θb, and iab(θ) = (∂η(θ)/∂θa)T
g(η(θ)) (∂η(θ)/∂θb) , and the average

expected Hessian matrix, H̄(θ∗j ) = [H̄ab(θ∗j )] = [Hab(θ∗j )]/n, has elements

H̄ab(θ∗j ) = (µ− ψ′(η(θ∗j )))T ηab(θ∗j )− iab(θ∗j ). (2.61)
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Using equation (2.59), (2.61), the bias term,

b = −1
2
tr{H̄(θ∗2)−1J̄(θ∗2)}+

1
2
tr{H̄(θ∗1)−1J̄(θ∗1)}, (2.62)

can be calculated from

tr{H̄(θ∗j )−1J̄(θ∗j )} = tr(
[
H̄ab(θ∗j )

]−1
η′(θ∗j )T g(φ)η′(θ∗j )) (2.63)

= tr(
[
(µ− ψ′(η(θ∗j )))T ηab(θ∗j )− iab(θ∗j )

]−1
η′(θ∗j )T g(φ)η′(θ∗j )), (2.64)

for j = 1, 2.

To represent the term tr{H̄(θ∗j )−1J̄(θ∗j )} in geometrical quantities, we consider a differentiable

(smooth) manifold of probability densities of the full exponential family as considered in Amari

(1982). The parameter η serves as a coordinate system on the manifold. The curved exponential

family is the imbedded sub-manifold. We briefly summarize the differential geometrical approach

of Amari (1982). We define the differential operator

∂a =
∂

∂θa
, (2.65)

∂a∂b =
∂2

∂θa∂θb
, (2.66)

where θa is the ath parameter for a = 1, 2, ..., m. The inner product of ∂a and ∂b is defined by

〈∂a, ∂b〉 = Covθ (∂al(θ), ∂bl(θ)) (2.67)

= iab. (2.68)

Note that J̄ab = Covφ (∂al(θ), ∂bl(θ)) 6= iab for misspecified models. The differential operators

{∂1, ∂2, ..., ∂m} span the tangent space at θ with the metric defined in the equation (2.67). Using

the Einstein summation convention where the repeating upper and lower indices imply summation
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over that index, the score function ∂a can be represented as

∂a = Bi
a∂i, (2.69)

where Bi
a = ∂ηi/∂θa and ∂i is the ith element of the score functions ∂l/∂η = n(ȳ − ψ′(η)) of the

natural parameterization η.

The (imbedding) k-dimensional full exponential family can be reparameterized with the k −m

dimensional parameter ν in addition to the m-dimensional parameter vector θ. Thus (θ, ν) is a new

(diffeomorphic) parameterization of η. Moreover we can choose the parameterization ν such that

the score functions are locally orthonormal to ∂a, i.e.

〈∂a, ∂γ〉 = 0 for a = 1, ..., m and γ = 1, ..., k −m, (2.70)

〈∂γ , ∂ζ〉 = δζ
γ for γ = 1, ..., k −m, and ζ = 1, ..., k −m, (2.71)

where ∂γ = ∂/∂νγ , and δζ
γ = 1 for ζ = γ, zero otherwise. The Euler-Schouten curvature tensor or

the imbedding curvature of the CEF in the full exponential family is given by

Habγ(θ) = 〈∂a∂b, ∂γ〉 (2.72)

= E {(∂a∂b − E∂a∂b)∂γ} . (2.73)

The Euler-Schouten curvature Habγ(θ) is an important geometrical quantity for the higher order

asymptotic analysis It depends on the imbedding space which means it is extrinsic, whereas the

Riemann-Christoffel curvature is intrinsic. For example, the surface of a cylinder in three di-

mensional Euclidean space has zero Riemann-Christoffel curvature since one can unroll it to two

dimensional Euclidean space without destroying its geometrical structure. But the Euler-Schouten

curvature tensor is not zero since its tangent space changes around the cylinder.

The mean zero random variable (∂a∂b−E∂a∂b) in equation (2.72) is called a covariant derivative
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with respect to 1-connection, and from equation (2.60), we have

∂a∂b − E∂a∂b = n(ȳ − ψ′(η(θ)))T ηab(θ). (2.74)

We can decompose (∂a∂b−E∂a∂b) with the tangential component and the normal component to

the space spanned by {∂1, ∂2, ..., ∂m}. The tangential and the normal components can be represented

with the orthonormal bases ∂c and ∂γ respectively. We have

∂a∂b − E∂a∂b = n(ȳ − ψ′(η(θ)))T ηab(θ) (2.75)

= Γc
ab∂c + Hγ

ab∂γ (2.76)

= Γc
abB

i
c∂i + Hγ

abB
i
γ∂i, (2.77)

where Γc
ab and Hγ

ab are the coefficients of the projected component onto the space spanned by the

basis vectors ∂c and ∂γ respectively. The last equality is from equation (2.69). When the bases {∂γ}
are orthonormal to {∂c}, we have Hγ

ab = Habγ , and the coefficients Hγ
ab represents the coefficients

of the imbedding curvatures.

Theorem 2.6. The term (µ− ψ′(η(θ∗j )))T ηab(θ∗j ) in equation (2.61) is given by

n(µ− ψ′(η(θ∗j )))T ηab(θ∗j ) = AiB
i
γHγ

ab, (2.78)

where Ai be ith element of (µ − ψ′(η(θ∗j ))), and Bi
γ and Hγ

ab are defined in equation (2.69) and

(2.76) respectively. If the model is 1-flat, or equivalently, has zero Euler-Schouten curvature (with

respect to 1-connection) at θ∗j , n(µ− ψ′(η(θ∗j )))T ηab(θ∗j ) = 0.

Proof. Let ∂i be the ith element of the score function with respect to the mean parameterization.

The score functions of mean and natural parameterizations have the relationship

∂i = gij∂j , (2.79)
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where gij is (i, j) element of g(η(θ))−1. Then we have

n(µ− ψ′(η(θ∗j )))T ηab(θ∗j ) = E
{
(µ− ψ′(η(θ∗j )))T g(η(θ∗j ))−1n(ȳ − ψ′(η(θ∗j )))

}{
n(ȳ − ψ′(η(θ∗j )))T ηab(θ∗j )

}

(2.80)

= E
{
Ai∂

i
}{

Γc
abB

i
c∂i + Hγ

abB
i
γ∂i

}
(2.81)

= E
{
Ai∂

i
} (

Hγ
abB

i
γ∂i

)
(2.82)

= AiB
i
γHγ

ab, (2.83)

where E is the expectation with respect to the distribution at η(θ∗j ). The third equality is from the

zero expected score,

E0∂c = (µ− ψ′(η(θ∗j )))T η′(θ∗j ) (2.84)

=
〈
Ai∂

i, Bi
c∂i

〉
(2.85)

= E
{
Ai∂

i
}{

Bi
c∂i

}
= 0. (2.86)

Note that the expectation E0 is with respect to the true model η = φ. Therefore we have the

duality of the mean and natural parameterization showing that the coefficients Ai of the score

functions of the mean parameterization ∂i and the coefficients Bi
a of the score functions of the

natural parameterization ∂i which is called a dual parameterization of the mean parameterization,

are orthogonal. When the curvature of the embedding model vanishes at θ∗j , i.e. Hγ
ab = 0, we have

n(µ− ψ′(η(θ∗j )))T ηab(θ∗j ) = 0.

In the general m-dimensional parameter case (m > 1), there does not exist a reparameteri-

zation that makes the information matrix an identity matrix for all θ, but there always exists a

local parameterization (locally 0-affine) that makes the information matrix an identity matrix at a

particular point. The existence of such parameterization at the pseudo-true model is sufficient for

our results. If we use a locally 0-affine parameterization such that iab(θ∗) = δb
a, then the bias can
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be calculated from

tr{H(θ∗j )−1J(θ∗j )} = tr(
[
AiB

i
γHγ

ab − δb
a

]−1
η′(θ∗j )T g(φ)η′(θ∗j )), (2.87)

for j = 1, 2 using Theorem 2.6. When the model j is exponential flat (Hγ
ab = 0), we have

tr{H(θ∗j )−1J(θ∗j )} = −tr(η′(θ∗j )T g(φ)η′(θ∗j )). (2.88)

Moreover if the full exponential family is totally flat (g(φ) = g(η(θj))), then η′(θ∗j )T g(φ)η′(θ∗j ) is

also a (mj ×mj) identity matrix since θj is 0-affine and we have

tr{H(θ∗j )−1J(θ∗j )} = −mj , (2.89)

where mj is the dimension of the parameter vector in model j.

2.5 Summary and Extension

The term tr{H(θ∗j )−1J(θ∗j )} in equation (2.18) can be used for the general form of the higher

order bias of the numerator of the test statistic. For one dimensional curved exponential families

embedded in a full exponential family, the bias can be decomposed into two parts (P + K) as

shown in Theorem 2.5. The first part (P ) vanishes when the imbedding model is totally flat and

the other part (K) vanishes when the curved exponential model has zero Efron’s curvature. For

multiparameter curved exponential families, if the embedding exponential model is totally flat, we

have J(θ∗j ) = Imj , where Imj is an (mj ×mj) identity matrix and mj is the number of parameters

in model j. If the model j has zero imbedding curvature with respect to 1-connection we have

H(θ∗j ) = −Imj .

We consider the extension of the results to general parametric families by approximating the

models with exponential models around the pseudo-true models. We illustrate the idea for general

(non-exponential) one-parameter models. Let lj = lj(θj) be a log likelihood function of model j.

As proposed in Efron (1975), the log likelihood function l̃(η) of the m-dimensional approximate
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exponential model around θ∗j is

l̃(η) = l∗j +
m∑

k=1

ηkl∗j/θk
j
− ψ(η), (2.90)

where

l∗j = lj(θ∗j ), (2.91)

l∗j/θk
j

=
∂k

∂θk
j

lj(θj)

∣∣∣∣∣
θj=θ∗j

, (2.92)

and ψ(η) is a normalizing constant. The model l̃(θj) is a one-dimensional curved exponential model

imbedded in l̃(η) with

η(θj) =
(

(θj − θ∗j ),
1
2
(θj − θ∗j )2, · · · ,

1
m!

(θj − θ∗j )m

)T

. (2.93)

To approximate two separate families of models, we propose to consider an (m1 + m2)-dimensional

exponential model

l̃(η) = l∗1 +
m1∑

k=1

ηkl∗1/θk
1

(2.94)

+ l∗2 +
m2∑

k=1

ηm1+kl∗2/θk
2
− ψ(η). (2.95)

The model j = 1, 2 are given by two curved exponential families with

η(θ1) =
(

(θ1 − θ∗1),
1
2
(θ1 − θ∗1)2, · · · ,

1
m1!

(θ1 − θ∗1)m1 , 0, 0, · · · , 0
)T

, (2.96)

and

η(θ2) =
(

0, 0, · · · , 0, (θ2 − θ∗2),
1
2
(θ2 − θ∗2)2, · · · ,

1
m2!

(θ2 − θ∗2)m2

)T

, (2.97)
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respectively. The true model η = φ is given with respect to the mean parameterization µ(η)η=φ,

µ(φ) = E0

(
l∗1/θ1

1
, l∗1/θ2

1
, · · · , l∗

1/θ
m1
1

, l∗2/θ1
2
, l∗2/θ2

2
, · · · , l∗

2/θ
m2
2

)T

, (2.98)

where E0 is the expectation with respect to the true model. Using the approximate embedding

exponential model l̃(η) and the approximate true model µ(φ) on it, we can generalize the differential

geometrical intuition to general families of models.

3 Fisher’s circles

We consider an example with Fisher’s circle models. The embedding space is a two-dimensional

exponential family with identity Fisher information matrix in the natural parameterization.

Let y1 and y2 be independent normal random variables with variance one and mean η1 and η2

respectively. We define two models M1 and M2 by two nonlinear restrictions on the mean (η1, η2)

of the random vector (y1, y2). The models are given by,

M1 : (η1 + 2)2 + η2
2 = 1, (3.1)

M2 : (η1 + 0.5)2 + η2
2 = 1.52. (3.2)

Figure 1 shows the models in (η1, η2) plane. The true model η = µ = (η1, η2) is assumed to be

µ = (0, 0) and the observed data are y = (y1, y2). These two models have constant curvatures

κ1 = 1 (radius = 1) and κ2 = 2/3 (radius = 1.5). The pseudo-true models are η(θ1 = 0) =

(−1, 0)T
, η(θ2 = 0) = (1, 0)T and MLEs are given by the closest models η(θ̂1), η(θ̂2) from y. For

simplicity, we parameterize the models by the counter-clockwise arclength θ1 ∈ [0, 2π), θ2 ∈ [0, 6π)

from the pseudo-true models. We can easily see the pseudo-true models of the two CEF circles

have the same divergence in KLIC from the true model since KLIC can be directly calculated from

the Euclidean distance in Fisher’s setting.
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We compare the original Vuong test statistic (from equations (2.34) and (2.35))

t1 =
{η(θ̂2)− η(θ̂1)}T y − {η(θ̂2)T η(θ̂2)− η(θ̂2)T η(θ̂2)}/2

‖ η(θ̂2)− η(θ̂1) ‖
(3.3)

and the bias corrected test statistic

t2 = t1 − b̂

‖ η(θ̂2)− η(θ̂1) ‖
, (3.4)

where

b̂ = −1
2

(
1

η′′(θ̂2)T (y − η(θ̂2))− 1
− 1

η′′(θ̂1)T (y − η(θ̂1))− 1

)
, (3.5)

and

κ1 =‖ η′′(θ̂1) ‖, κ2 =‖ η′′(θ̂2) ‖ . (3.6)

Since the embedding space is totally flat, the bias correction term is driven by the curvatures only.

Figure 2 is the density and the cumulative density function (CDF) of the two test statistics t1

and t2 from 3, 000 iterations. We can see that the original test statistic is biased toward model 2

(positive t1) and the bias corrected test statistic is closer to the standard normal distribution. The

first graph in Figure 3 shows the empirical CDF of the squared test statistics with compared to the

CDF of χ2(1). The 45 degree line implies exact match of the two CDFs. The bias corrected test

statistic is closer to the chi-square distribution. This means it performs better in two tail tests.

The second graph shows the empirical CDFs of t1 and t2 with respect to the standard normal CDF.

The size approximation of the bias corrected test statistic especially improves in the left tail area

and it is better than the original test statistic at all levels of tests.

To see the effect of curvatures of the models, we consider different radii (curvatures) R =

1.1 (0.909) or 1.4 (0.714) or 2 (0.5) or 3 (0.333) for the model 2. Figure 4 shows the CDF comparisons

from the different radii of Model 2. As the curvature of model 2 increases the improvement from

the bias correction increases, as expected from our geometric analysis.
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4 Conclusion

We showed that the numerator of the test statistic of the non-nested hypothesis test of Vuong

(1989) can be modified with a higher order bias correction term that can be calculated by plugging

in the MLEs. The bias correction term is shown to be reparameterization invariant. For a curved

exponential family, we have shown that it is influenced by two geometrical factors, the total flatness

of the embedding full exponential family and the Efron’s curvatures of the candidate models. When

the full exponential model is totally flat and the Efron’s curvature is zero (no exponential curvature),

the correction term is a simple function of the number of parameters used. In a simulation, bias

correction clearly improved the performance of the test statistic.
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Figure 1: Two competing Fisher’s circles
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Figure 4: Comparison of CDFs of the test statistics from different curvatures for Model 2. The 45
degree line is the exact match of CDFs.
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